Building a Bridge

Standard:

NGSS Standard: 4-ETS1-2 – Engineering Design

Students will learn how to design and test a bridge using structural engineering principles.

A. GRADE LEVEL: 4th–6th Grade **B. SUBJECT**: STEM/Engineering

C. DATE: [Insert Date] **D. DURATION**: 3–4 days

E. LESSON FOCUS: Structural Engineering – Building and Testing a Paper Bridge

F. MATERIALS:

- Construction paper (for building the bridge)
- Ruler or measuring tape
- Scissors
- Masking tape
- Small weights (e.g., washers or small bags of sand)
- Stopwatch
- Pen/pencil and paper for recording data

G. LESSON OBJECTIVES:

- Students will design and build a simple bridge structure using paper.
- Students will apply concepts of engineering design to create a functional bridge.
- Students will test their bridge designs by adding weight and measuring the bridge's strength.
- Students will analyze the results and improve their designs based on observations.

H. PROCEDURES:

1. **INTRODUCTION**:

- Discuss the concept of bridges and their importance in transportation, engineering, and construction.
- Introduce different types of bridges, such as beam, arch, and suspension bridges, and discuss the basic concepts of structural engineering (e.g., support, load, force).
- Show pictures of different bridges and ask students to identify which ones are most likely to hold a lot of weight.

2. **EXPERIMENT**:

- Provide students with the materials and instructions to design and build a paper bridge.
- Have students measure and cut the construction paper to create their bridge design. The bridge should span across two blocks or books (or a similar gap).
- Students should aim to create a bridge that can hold as much weight as possible.
 They will test the bridge by gradually adding weight and recording the results.

3. **OBSERVATION**:

- Students will observe how the bridge behaves under increasing weight and record the amount of weight the bridge can hold before it collapses.
- Encourage students to consider why their bridge collapsed or succeeded and to think about the importance of balance and design in bridge construction.

4. **GENERALIZATION**:

- o Discuss what worked well and what didn't with the students' bridge designs.
- o Guide students in identifying the key elements that contributed to their bridge's success (e.g., bridge shape, materials used).
- Discuss how real-world engineers use similar tests to make sure bridges are strong and safe.

5. ASSESSMENT:

- Evaluate each student's bridge design based on their ability to apply engineering concepts.
- o Assess the students' problem-solving skills, creativity, and how well they were able to improve their designs based on testing results.
- Have students write a brief reflection on what they learned about structural engineering.

Note 1: Clean-up

• Remind students to clean up their workspaces by gathering materials and disposing of any scrap paper. Have them store their bridge models for future reference or to test again later.

Note 2: Accommodation for ELL, ESE, etc.

- Provide visual aids, such as diagrams or videos of bridge structures, to help English Language Learners (ELLs) and students with special education needs.
- Use simplified language or offer sentence starters for writing reflections.
- Pair students with stronger English speakers or provide extra time and guidance for instructions.